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The capillary instability of a liquid thread containing a regular array of spherical
particles along the centreline is considered with reference to microencapsulation. The
thread interface may be clean or occupied by an insoluble surfactant. The main goal
of the analysis is to illustrate the effect of the particle spacing on the growth rate of
axisymmetric perturbations and identify the structure of the most unstable modes.
A normal-mode linear stability analysis based on Fourier expansions for Stokes flow
reveals that, at small particle separations, the interfacial profiles are nearly pure
sinusoidal waves whose growth rate is nearly equal to that of a pure thread devoid of
particles. Higher harmonics suddenly enter the normal modes for moderate and large
particle separations, elevating the growth rates and yielding a stability diagram that
consists of a sequence of superposed pure-thread lobes. A complementary numerical
stability analysis based on the boundary integral formulation for Stokes flow reveals
the strong stabilizing effect of particles whose radius is comparable to the thread
radius. Numerical simulations of the finite-amplitude motion based on the boundary
integral method demonstrate that thread breakup leads to particles coated with
annular layers of different thicknesses.

1. Introduction
Microencapsulation technology is of considerable interest in the food, biomedical,

and pharmaceutical industry, where small particles, cells and cell agglomerates are
produced and dispersed in an ambient medium. Microencapsulation techniques
include droplet and emulsion formation, polyelectrolyte multi-layering and direct
polymerization from a surface-adsorbed initiator. When applied to biological cells,
many of these methods become limited by specifications of and constraints on
chemical composition, uniformity and thickness of the membrane, polymerization
scheme and maximum allowable shear stress. Encapsulation efficiency is of primary
importance in the biomedical industry, as reviewed by Orive et al. (2003).

In one microencapsulation technique, a suspension of small particles, droplets,
bubbles or cells is ejected through a micronozzle to form a liquid thread (e.g. Goosen
et al. 1985). The Rayleigh capillary instability due to interfacial tension causes the
thread to disintegrate into droplets that engulf the particles. Ideally, each droplet
should engulf precisely one particle, so that solvent is not wasted, and the thickness
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of the coated liquid should be controlled by carefully selecting the nozzle diameter,
physical properties of the materials and volume fraction of the suspension.

Hatziavramidis (2006) developed an efficient encapsulation device consisting of an
encapsulation chamber that contains a two-layer water–oil system in which pancreatic
islets are enclosed by a structurally stable, semi-permeable membrane into microcap-
sules. Cells or cell aggregates are fed in a single file by hydrodynamic focusing,
thus ensuring separate encapsulation of individual islets. A valveless, diffuser-nozzle
micropump transports the encapsulated islets out of the encapsulation chamber into a
separation chamber in which the encapsulated islets are recovered by filtration or cent-
rifugation. After the islets have been entrained into the withdrawal tube and coated,
they are exposed to 514 nm light of an argon-ion laser to excite eosin-Y, initiate free-
radical polymerization and produce a poly(ethylene glycol) (PEG) hydrogel. The thick-
ness of the microcapsule shell enclosing an individual islet is controllable to within tens
of a micron. The device can be used for coating particles of micron size with a structur-
ally stable polymeric film but is particularly appropriate for group of or isolated living
cells. In the case of islets, a thin but stable shell consisting of a selectively permeable,
cross-linked polymer film encapsulates every single islet. Hatziavramidis & Pozrikidis
(2007) studied the withdrawal hydrodynamics by analytical and numerical methods.

With a view towards establishing guidelines for controlling the microencapsulation
process, in this work we consider the capillary instability of a liquid thread containing
a coaxial array of evenly spaced spherical particles. In the limit of vanishing particle
size, we obtain a pure liquid thread suspended in an infinite ambient fluid. The
stability of the interface of the pure thread was studied by Tomotika (1935) for
constant surface tension and by Kwak & Pozrikidis (2001) and others for varying
surface tension due to an insoluble surfactant. Other researchers have considered
the instability of an annular layer coated on the outside or inside of a circular
cylinder. Although the former is somewhat relevant to the particle file configuration
considered in the present work, it does differ considerably by permitting the growth
of pure sinusoidal waves as normal modes.

In § 2, the physical configuration and the main objectives of the analysis are
discussed. In § 3, a normal-mode linear stability analysis for Stokes flow is undertaken
for axisymmetric disturbances. The perturbed interfacial position and flow variables
are expanded in Fourier series whose fundamental wavenumber is determined by the
particle spacing. Higher harmonic waves are naturally introduced due to the particle
array, yielding normal modes with a distributed spectrum. The results reveal the
paramount importance of higher harmonic components for sufficiently large particle
separations. The linear stability analysis based on Fourier series becomes inaccurate
for large particle radii and interfacial amplitudes.

In § 4, a boundary integral formulation is presented for fluids with equal viscosity
based on the periodic, axisymmetric Green’s function of Stokes flow, and a numerical
linear stability analysis is performed. The method is pivoted on the compatibility
condition reconciling interfacial deformation and kinematics. The results complement
and extend those of the Fourier series analysis by demonstrating the stabilizing effect
of particles whose radius is comparable to that of the thread. Numerical solutions
of the finite amplitude motion provide insights into the encapsulation process by
illustrating the mechanisms of thread disintegration.

2. Problem formulation
We consider a cylindrical liquid thread with radius b and viscosity μ1 suspended in

an effectively infinite ambient fluid with viscosity μ2. The viscosity ratio between the
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Figure 1. (a) An array of spherical particles is deployed along the centreline of a liquid
thread. (b) The capillary instability leads to particle encapsulation.

fluids is λ= μ2/μ1. An array of evenly spaced spherical particles with radius a < b is
deployed along the centreline, as shown in figure 1. The densities of the two fluids
are equal, and the particles are neutrally buoyant. The interface between the thread
and the ambient fluid is occupied by an insoluble surfactant. The Rayleigh capillary
instability due to interfacial tension causes the cylindrical thread to develop periodic
corrugations of increasing amplitude and eventually disintegrate into an array of
drops. We consider the instability subject to periodic axisymmetric perturbations
whose wavelength is equal to the particle spacing L. Each period of the perturbation
engulfs precisely one particle located at the crest of each period of the sinusoidal
wave, as illustrated in figure 1.

Assume that the fluid contained in each period of the thread eventually separates
from its neighbours, yielding an annular drop with outer radius R and inner radius
a. In the absence of satellite drop formation causing thread loss, mass conservation
requires

4π

3
R3 = πb2L. (2.1)

The volumetric concentration of the suspension is φ = Vp/Vt = 4a3/(3 b2L) = a3/R3,
where Vp =4πa3/3 is the particle volume and Vt = πb2L is the volume occupied by
one period of the thread. In practical applications, we want to specify the coating
thickness R − a and adjust the thread radius b so that (2.1) is satisfied with L = L∗,
where L∗ is the wavelength of the most unstable mode. A rough approximation
can be obtained by overlooking the particles and identifying L∗ with the most
dangerous wavelength of the homogeneous thread. In the case of fluids with equal
viscosity and in the absence of surfactants, L∗/b � 11.2. Specifying R =α a, we find
φ = 1/α3 and b2 = 4 α3a3/(3L∗), where α is a coefficient that is greater than unity. For
α = 2.5, we find b/a � 1.23, and for α = 2.0, we find b/a � 0.98, which is inadmissible.
In fact, the simplified analysis predicts that b/a > 1 only for thick coatings, i.e.
α > 2.04.

Given these limitations, we proceed to study the precise effect of the particles on
the most dangerous mode by carrying out a normal-mode linear stability analysis
and then describe the process of breakup by numerical simulation.



144 M. G. Blyth and C. Pozrikidis

3. Linear stability analysis by Fourier expansions
In the base state, two quiescent fluids are separated by a cylindrical interface with

a circular cross-section. With reference to the cylindrical polar coordinate system
illustrated in figure 1, we consider axisymmetric perturbations with period equal to
the particle spacing, L, and describe the position of the interface using a Fourier series

σ = bf (x, t) (3.1)

in which f (x, t) = 1 + εη(x, t) and

η(x, t) =

∞∑
m=1

Am(t) cos(mkx), (3.2)

where k = 2π/L is the fundamental wavenumber, Am are dimensionless time-
dependent coefficients and ε is a dimensionless number whose magnitude is small
compared to unity. The centre of one arbitrary spherical particle in the infinite array
has been placed at the origin of the x axis, as shown in figure 1. Since b > a, the
dimensionless wavenumber is bounded by kb < (b/a) π.

The x and σ velocity components can be expressed in terms of the Stokes
streamfunction for axisymmetric flow, ψ ,

w(j ) =
1

σ

∂ψ (j )

∂σ
, u(j ) = − 1

σ

∂ψ (j )

∂x
, (3.3)

where j = 1 for the thread and 2 for the ambient fluid. Inertial effects are assumed
negligible, and the flows inside and outside the thread are governed by the linear
equations of Stokes flow subject to suitable boundary conditions over the interface
and particle surface.

We confine our attention to Stokes flow and introduce the Stokes streamfunction,
satisfying the fourth-order partial differential equation

L4ψ (j ) = 0, (3.4)

for j = 1, 2, where

L2 ≡ ∂2

∂σ 2
− 1

σ

∂

∂σ
+

∂2

∂x2
(3.5)

is a second-order differential operator (e.g. Pozrikidis 1997).
Following Wang & Skalak (1969), we express the streamfunction inside the thread

as a superpositioning of a regular component described by a Fourier series and
a singular component associated with rotational and irrotational singularities of
axisymmetric Stokes flow represented by two sums,

ψ (1)(x, σ, t) = ε
γ0b

2

μ1

[ ∞∑
m=1

(
Bm

σ 2

b2
I0(mkσ ) + Cm

σ

b
I1(mkσ )

)
sin(mkx)

+

∞∑
l=1

(DlFl(x, σ ) + ElGl(x, σ ))

]
, (3.6)

where γ0 is the surface tension of the unperturbed cylindrical interface; I0 and I1 are
Bessel functions; and Bm, Cm, Dl and El are dimensionless time-dependent coefficients.
The second sum on the right-hand side of (3.6) represents the flow induced by an
infinite periodic array of singularities, yielding a flow that is symmetric with respect



Particle encapsulation due to thread breakup in Stokes flow 145

to the origin of the x axis. The first set of singularities are derivatives of the point
force, given by

Fl(x, σ ) ≡ σ̂ 2

∞∑
n=−∞

∂2l−1

∂x̂2l−1

(
1

[σ̂ 2 + (x̂ − nL̂)2]1/2

)
= −σ̂ 2 ∂2(l−1)S3

∂x̂2(l−1)
, (3.7)

where x̂ = x/b, σ̂ = σ/b, L̂= L/b and

S3 ≡
∞∑

n=−∞

x̂ − nL̂

[σ̂ 2 + (x̂ − nL̂)2]3/2
. (3.8)

The second set of singularities are derivatives of the point source, given by

Gl ≡ σ̂ 2

∞∑
n=−∞

∂2l−1

∂x̂2l−1

(
1

[σ̂ 2 + (x̂ − nL̂)2]3/2

)
= −3 σ̂ 2 ∂2(l−1)S5

∂x̂2(l−1)
, (3.9)

where

S5 ≡
∞∑

n=−∞

x̂ − nL̂

[σ̂ 2 + (x̂ − nL̂)2]5/2
. (3.10)

The functions Fl(x, σ ) and Gl(x, σ ) can be expressed in terms of sine Fourier series,

Fl(x, σ ) =

∞∑
m=1

Alm(σ ) sin(mkx), Gl(x, σ ) =

∞∑
m=1

Blm(σ ) sin(mkx), (3.11)

where Alm and Blm are the corresponding Fourier coefficients.
Because of the assumed left-to-right symmetry with respect to the particle centre,

the particles remain stationary. The no-slip and no-penetration conditions on the
surface of the particle centred at the origin require

ψ (1)(a cos θ, a sin θ, t) = 0,
∂ψ (1)

∂σ
(a cos θ, a sin θ, t) = 0, (3.12)

for 0 <θ < π/2.
Following Goren (1962), we express the general solution for the streamfunction in

the ambient infinite fluid as

ψ (2)(x, σ, t) = ε
γ0b

2

μ1

∞∑
m=1

(
Fm

σ 2

b2
K0(mkσ ) + Gm

σ

b
K1(mkσ )

)
sin(mkx), (3.13)

where Fm, Gm are dimensionless time-dependent coefficients, and K0, K1 are Bessel
functions. This expansion yields a quiescent fluid far from the thread, σ → ∞.

To reconcile the thread and ambient flows, we introduce kinematic and dynamic
conditions at the interface. Continuity of the radial and axial velocities requires the
kinematic conditions

ψ (1) = ψ (2),
∂ψ (1)

∂σ
=

∂ψ (2)

∂σ
(3.14)

evaluated at σ = bf (x, t). Substituting (3.6) and (3.13) and linearizing with respect to
ε, we find

I0(k̂m)Bm + I1(k̂m)Cm − K0(k̂m) Fm − K1(k̂m) Gm

+

∞∑
l=1

(DlAlm(b) + ElBlm(b)) = 0, (3.15)



146 M. G. Blyth and C. Pozrikidis

and

[2I0(k̂m) + mk̂I1(k̂m)]Bm + k̂mI0(k̂m)Cm + [k̂mK1(k̂m) − 2K0(k̂m)]Fm

+ k̂mK0(k̂m)Gm +

∞∑
l=1

(DlA′
lm(b) + ElB′

lm(b)) = 0, (3.16)

where k̂m =mkb. Kinematic compatibility requires D(σ − bf )/Dt = 0, where D/Dt is
the material derivative. Linearizing and simplifying, we find

∂f

∂t
= u(2) (3.17)

at σ = bf (x, t). Substituting (3.2) and (3.13), we derive a system of differential
equations,

dAm(t)

dt
= − γ0

μ1

k̂m(K0(k̂m)Fm + K1(k̂m)Gm). (3.18)

3.1. Surfactant transport

The interface is occupied by an insoluble surfactant with surface concentration Γ (x, t)
governed by the convection–diffusion equation

dΓ

dt
= w

∂Γ

∂l
− 1

σ

∂(σutΓ )

∂l
− 2κmunΓ +

Ds

σ

∂

∂l

(
σ

∂Γ

∂l

)
, (3.19)

where l is the arclength along the trace of the interface in a meridional plane; t is the
unit tangent vector pointing in the direction of increasing arclength l; κm ≡ 1/2 ∇ · n is
the mean curvature; ut = u · t and un = u · n are the tangential and normal interfacial
velocities with the unit normal vector n pointing into the thread (e.g. Li & Pozrikidis
1997; Yon & Pozrikidis 1998). In practice, the surfactant diffusivity Ds is very small,
and the diffusion term in (3.19) makes a negligible contribution. The derivative d/dt

on the left-hand side of (3.19) expresses the rate of change of a variable following the
motion of an interfacial marker point moving normal to the interface and with an
arbitrary tangential velocity w(l). If w = ut , the marker points are Lagrangian point
particles moving with the fluid velocity.

Assuming that the surfactant concentration is sufficiently far below the saturation
level, we adopt Gibbs’s linear equation of state γc − γ = Γ E relating the local surface
tension to the surfactant concentration, where E is the surface elasticity, and γc is the
surface tension obtaining at a clean interface free of surfactant (e.g. Pozrikidis 2004).
Alternatively, the law may be expressed as

γ =
γ0

1 − β

(
1 − β

Γ

Γ0

)
, (3.20)

where Γ0 is a reference surfactant level, and β = Γ0E/γc is a physio-chemical
parameter. We will present results with reference to the dimensionless Marangoni
number, defined by

Ma =
β

1 − β
. (3.21)

When Ma = 0, the surface is clean, and the surface tension is constant along the
interface.
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In the linear stability analysis, the surface tension and surfactant concentration are
expressed as perturbations of their base state values,

γ = γ0(1 + εγ̂ ), γ̂ =

∞∑
m=1

γm(t) sin(mkx), (3.22)

Γ = Γ0(1 + εΓ̂ ), Γ̂ =

∞∑
m=1

Γm(t) sin(mkx), (3.23)

where γ̂ , Γ̂ are dimensionless functions, and γm, Γm are dimensionless coefficients. The
linearized form of (19), the surfactant transport equation, is given by (e.g. Blyth &
Pozrikidis 2004),

∂Γ̂

∂t
+

(
∂w(2)

∂x
+

u(2)

b

)
= Ds

∂2Γ̂

∂x2
, (3.24)

where all terms are evaluated at the unperturbed position, σ = b. Substituting (3.22)
and (3.13), we find

dΓm

dt
+ m2k2DsΓm =

γ0

μ1

mk((Fm − k̂mGm) K0m − (k̂mFm + Gm) K1m), (3.25)

where K0m = K0(k̂m), and K1m = K1(k̂m).

3.2. Dynamic interfacial conditions

A second set of interfacial conditions arises by balancing the stress on either side of
the interface and the surface tension, yielding(

σ (1) − σ (2)
)

· n = γ 2κmn − ∂γ

∂l
t, (3.26)

evaluated at σ = bf (x, t), where σ (j ) is the Newtonian stress tensor in the j th fluid.
The final term on the right-hand side of (3.26) is the Marangoni traction due to local
variations in the surface tension associated with the presence of the surfactant.

A linear normal stress balance arises by taking the dot product of (3.26) with
the unit normal vector, n, to obtain p

(1)
0 − p

(2)
0 = γ0/b, where the subscript 0 denotes

the basic quiescent state. Making substitutions and eliminating the pressure using the
Stokes equation, we find[

2μj

∂2u(j )

∂σ∂x
− μj ∇2w(j )

]1

2

= γ0

(
fx

b2
+ fxxx

)
− γ0

b

∂γ̂

∂x
, (3.27)

evaluated at σ = b, where [·]12 = [·]1 − [·]2 signifies a discontinuity across the interface.
The linearized form of the tangential stress balance takes a similar form,[

μj

(
∂w(j )

∂σ
+

∂u(j )

∂x

)]1

2

= γ0

∂γ̂

∂x
(3.28)

evaluated at σ = b. Substituting the Fourier expansions for the velocity and surface
tension and using Gibbs’s law (3.20) to eliminate the surface tension in favour of the
surfactant concentration, we derive normal and tangential stress balances

2k̂2
mI1(k̂m)Bm + 2k̂m[k̂mI0(k̂m) − I1(k̂m)]Cm + 2λk̂2

mK1(k̂m)Fm + 2λk̂m[k̂mK0(k̂m)

+ K1(k̂m)]Gm +
[
1 − k̂2

m

]
Am + MaΓm = 2k̂m

∞∑
l=1

(DlAlm + ElBlm) (3.29)
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and

2[I1(k̂m) + k̂mI0(k̂m)]Bm + 2k̂mI1(k̂m)Cm + 2λ[K1(k̂m) − k̂mK0(k̂m)]Fm

− 2λ k̂mK1(k̂m)Gm − MaΓm + k̂m

∞∑
l=1

(DlAlm + ElBlm) = 0, (3.30)

where k̂ = kb.

3.3. Normal modes

With a view to identifying normal modes, we seek exponentially growing or decaying
solutions in the form

(Am, Bm, Cm, Fm, Gm, Γm) = est (Ãm, B̃m, C̃m, F̃ m, G̃m, Γ̃ m) (3.31)

and

(Dl, El) = est (D̃l, Ẽl), (3.32)

for l = 1, 2, . . . , where s is an unknown growth rate. Substituting these expressions in
(3.18) and (3.25), we obtain

sÃm = − γ0

μ1

k̂m(K0(k̂m)F̃m + K1(k̂m)G̃m) (3.33)

and

(s + m2k2Ds)Γ̃m =
γ0

μ1

mk([F̃m − k̂mG̃m]K0m − [k̂mF̃m + G̃m]K1m). (3.34)

The continuity conditions (3.15) and (3.16) and the interfacial stress balances (3.29)
and (3.30) remain the same, provided that tildes are inserted over the unknown
coefficients.

We derived a system of six homogeneous equations for each Fourier mode m. The
set of equations for each Fourier mode is coupled with corresponding sets for all other
Fourier modes through the no-slip and no-penetration conditions over the spherical
particles, expressed by (3.12). Only in the absence of the particles are the Fourier
modes also normal modes.

The eigenvalue problem was solved numerically to obtain the growth rates of
normal modes. A set of N collocation points is introduced around the contour of the
sphere in a meridional plane at the meridional angles θi = (π/2)(1 − i/(N + 1)), where
i = 1, . . . , N . Enforcing the no-slip and no-penetration conditions (3.12) yields a set of
2N algebraic equations. Next, the Fourier series (3.6) and (3.13) are truncated after M

terms, furnishing a further set of 6M equations comprising the interfacial conditions.
Finally, the infinite series in (3.29) and (3.30) are truncated after N terms to obtain a
set of 6M +2N equations for the 6M +2N unknown coefficients. The computation of
the sum in (3.8) is expedited by applying the Aitken extrapolation method for a series
with quadratic decay (e.g., Pozrikidis 2008). Because of the quartic decay of the series
in (3.10), the sum can be computed efficiently by direct summation. The derivatives
of S3 and S5 in (3.8) and (3.10) were computed using recurrence formulae presented
in Appendix A. The Fourier coefficients in the expansions in (3.11) were computed
by a fast Fourier transform (FFT). Assembling the full set of equations, we derive a
generalized matrix eigenvalue problem expressed by

A · x = sB · x, (3.35)
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Figure 2. Graphs of the dominant growth rates, S =(γ0/bμ1)s, for various truncation levels,
M and N , for a case with kb = 0.45, a/b = 0.2, λ= 0.5 and Ma = 0.

where A and B are (6M + 2N) × (6M + 2N) coefficient matrices, and x = (Ã1, B̃1,
C̃1, F̃1, G̃1, Γ̃1, . . . , ÃM , B̃M , C̃M , F̃M, G̃M, Γ̃M, D1, E1, . . . , DN, EN )T is the vector
of unknowns. The solution was found numerically using the Numerical Algorithms
Group (NAG) Fortran Library code F02GJF implementing the QZ algorithm. A
typical calculation with N = M = 5 takes around 10 s on a 2 GHz processor running
Linux. The CPU time rapidly escalates for larger values of N and M .

To illustrate the accuracy of the numerical method, we consider a thread
with a clean interface, i.e. Ma = 0, and introduce the dimensionless growth rate,
S = γ0s/bμ1. Figure 2 shows the dominant growth rate for a sample case with
moderate wavenumber, kb = 0.45, for a/b = 0.2 and λ= 0.5. The FFT was performed
with NF =26 = 64 Fourier modes. Computed values are shown for several Fourier
truncation levels, M , and different numbers of collocation points around the
particle contour, N . The results reveal that good accuracy for small particles and
moderate wavenumbers can be obtained with a low or moderate truncation level.
Smaller wavenumbers, with kb smaller than about 0.4, require higher numerical
resolution.

The results presented in § 4 for moderate wavenumbers were obtained with N = 4,
M = 7 and NF =26. Results for smaller wavenumbers were obtained using truncation
levels up to N = 7, M = 30 and NF = 8. For large particles, with a/b greater than
about 0.2, a large number of collocation points are required, demanding a large
value of N and the consequent computation of high-order derivatives of the point
force and point source terms in (3.7) and (3.9). In numerical practice, this leads to
unacceptable levels of error that undermine the accuracy of the calculations. An
alternative approach based on the boundary integral method for Stokes flow capable
of producing accurate results for particles with a/b > 0.2 is presented in § 5.

4. Results and discussion
A pure thread devoid of particles admits one stable, unstable or neutrally stable

normal mode for a fixed wavenumber kb in the absence of surfactants, i.e. Ma =0
(Tomotika 1935). When the thread is loaded with particles, multiple normal modes
arise for any given set of parameters, and the interfacial shape for each mode is no
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Figure 3. (a) Growth rates of the two dominant modes for a/b = 0.2, λ= 0.5 and Ma =0;
(b) close-up of (a). The growth rate of a pure thread and its first three higher harmonics are
shown as thin dotted, thin broken, thin solid and thin dot-dashed lines, respectively.

longer a pure Fourier mode. However, in all cases, instability occurs only below the
critical Rayleigh threshold of unity, i.e. when kb < 1.

Figure 3(a) shows graphs of the growth rate of the two dominant modes for a
thread suspended in a less viscous fluid, λ=0.5, and a clean interface, Ma = 0. The
particle radius is five times smaller than the thread radius, i.e. a/b = 0.2. The dominant
growth rates of the pure thread are depicted as thin lines, and the dominant growth
rates of the loaded thread are depicted as thick lines. The thin broken, solid and
dot-dashed lines show stability graphs for the first few higher harmonic disturbances
of the pure thread whose wavelength is equal to an integral fraction of the particle
spacing, i.e. L/2, L/3 and L/4.

The results show that the most dangerous modes of the loaded thread overlap with
those for a pure thread. As kb decreases from the Rayleigh threshold of unity, the
dominant loaded-thread modes lock on to the fundamental pure-thread mode and
its first higher harmonic. The growth rate for the fundamental mode coincides with
the growth rate for its first higher harmonic at k̂ = 0.352. At this crossover point,
the dominant loaded-thread mode jumps from the fundamental pure-thread mode to
its first higher harmonic. Simultaneously, the second most dangerous loaded-thread
mode jumps from the first higher harmonic to the fundamental mode. The interchange
is shown in close-up in figure 3(b).

Physically, the particles allow all higher harmonics of the fundamental wavenumber
determined by the particle spacing to enter the normal modes and thereby permit
the most unstable available higher harmonic waves of the pure thread to dominate
the motion. Corroborative evidence is presented in figure 4 showing the interfacial
deflection of the most unstable normal modes, η̃ ≡ η e−st , at kb = 0.4 and 0.3. The first
wavenumber, kb =0.4, lies on the right of the transition point at kb = 0.35199737,
where the pure modes shown with broken and dotted lines in figure 3(b) intersect. The
second wavenumber, kb =0.3, lies on the left of the transition point. The deflections
are normalized so that η̃(0) = 1. The Fourier coefficients for each profile are presented
in table 1 accurate to two decimal places. Evidently, the deflection for kb = 0.4 is
almost a pure cosine wave with wavelength L, and the deflection for kb =0.3 is
almost a pure cosine wave with wavelength L/2.

In both cases described in figure 4, the interfacial profiles are virtually
indistinguishable from the sinusoidal profiles for a pure thread. The profile for
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kb A1 A2 A3 A4

0.4 1 0 0 0
0.3 0 1 0 0

Table 1. Interfacial displacement coefficients of the normal modes, Am, corresponding to the
graphs shown in figure 4 for a/b =0.2, λ= 0.5 and Ma = 0.
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Figure 4. Linear interfacial deflection η̃ for a/b =0.2, λ= 0.5, Ma = 0 and (a) kb = 0.40,
(b) kb =0.3. The particle is located at x/L = 0.

kb = 0.4 is almost identical to the fundamental pure wave, and the profile for kb = 0.3
is almost identical to the first higher harmonic of the pure wave. As the particle size
tends to zero, the presence of the particles becomes significant insofar as to determine
the fundamental wavenumber, and the stability graph consists of an infinite sequence
of the fundamental and superharmonic lobes of the pure thread. It is intriguing that
for the small but not infinitesimal particle size considered in figure 4, the transition
from the fundamental to the first higher harmonic mode occurs suddenly with respect
to the wavenumber. In § 5, we will see that for particles with larger size, the transition
from lobe to lobe is smoother.

Accurate numerical computation becomes increasingly difficult as the wavenumber
decreases. However, the results show that for small particles, with a/b smaller than
0.2, the growth rates of loaded-thread normal modes coincide with those of a pure
thread and jump from one pure-thread mode to its immediate higher harmonic at the
pure-thread intersections. Guided by this observation, we trace the behaviour of the
growth rates at small wavenumber by following the intersections of the growth rates
for the pure-thread modes. Figure 5(a) displays the wavenumbers at which pure-
thread modes with wavelength 2π/(mk) and 2π/[(m + 1)k] intersect for increasing
values of the integer index m. The results for a clean thread, with Ma = 0, are shown
with circles on a solid line.

As m increases, the wavenumber approaches zero at a rate that is proportional to
1/m. At each intersection, the pure mode with the shorter of the two wavelengths
dominates the interfacial deflection. In fact, the loaded thread behaves just as though
the particles were absent. For example at the intersection between the thin solid and
the thin broken line in figure 3(a), which although not clearly visible in the figure
occurs at kb = 0.21078, accurate calculations using up to N = 16 collocation points
reveal that the growth rate is almost entirely insensitive to the particle radius over
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λ Ma kb S

0.10 0 0.2786 0.090
0.25 0 0.3239 0.062
0.50 0 0.3520 0.044
0.50 1 0.3832 0.031
0.50 2 0.3946 0.029
1 0 0.3728 0.029

10.0 0 0.3789 0.009

Table 2. Resonant growth rates S and corresponding pure-mode intersection wavenumbers
kb for various values of λ and Ma .
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Figure 5. (a) The wavenumbers at the points of intersection between the pure-thread modes
with wavelength 2π/(mk) and 2π/[(m + 1)k] for λ= 0.5, Ma =0 (circles on a solid line) and
λ=0.5, Ma = 1 (squares on a broken line). (b) Corresponding growth rates at the wavenumbers
in (a).

the range a/b =0.2 up to a/b =0.8, changing by less than 0.1 %. A similar remark
holds for the intersection between the thin solid line and the thin dot-dashed line
in figure 3(a), where kb =0.15047. Again, the growth rate is virtually independent
of the particle radius over the range a/b = 0.2 up to a/b = 0.8, changing by less
than 0.2 %. Indeed, this phenomenon appears to be independent of the choice of
parameter values. In table 2 we show the resonant growth rates S at sample pure-
mode intersection wavenumbers for a selection of different values of λ and Ma . In
each case, we have checked that the growth rate is identical to the precision shown
for each of the particle sizes a/b = 0.2, 0.4, 0.6 and 0.8. In general, the particles are
expected to influence the thread dynamics more actively as a/b increases. This will be
demonstrated in § 5 through a boundary integral stability analysis and simulations.
The growth rates at the wavenumbers of intersection are shown in figure 5(b). It
appears that as kb approaches zero, the growth rate tends to a finite limit.

Suppose that the interfacial waves lead to thread breakup into drops. If the
fundamental wave is the most unstable, all particles will be encapsulated, and no pure
drops will develop, apart from small satellite drops. If the first higher harmonic wave
is the most unstable, all particles will be encapsulated, and an alternating sequence
of drops will develop. If the mth higher harmonic is the most unstable, a sequence of
m − 1 drops will develop, interrupted by a sequence of coated particles. To estimate
the outer shell radius of the encapsulated particles, we may assume that L is the most
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Figure 6. Comparison of the growth rates of a loaded thread with a/b = 0.2 and λ=0.5 and
an annular thread with viscosity μ2 = 0.5μ1 coating a cylinder of radius 0.2b. The dominant
growth rates for a loaded thread shown as thick solid lines. (a) Results for a clean interface,
Ma = 0. The dominant growth rate and its first higher harmonic for an annular thread are
shown as thin dotted and thin broken lines, respectively. (b) Results in the presence of a
surfactant with Ma = 1 and Ds = 0. The dominant growth rates for an annular thread are
shown as thin broken lines.

unstable wavenumber for a pure thread corresponding to 2πbm/L � 0.526 when
λ= 0.5 and consider a modification of (2.1),

4

3
π R3 =

πb2L

m
χm, (4.1)

where χm expresses the volume fraction of liquid apportioned to the particles
determined by the structure of the normal modes, and χ1 � 1. Rearranging, we
find

R

b
=

(
6πχm

4 × 0.526

)1/3

. (4.2)

In § 5, we will see that χm strongly depends on the precise form of an imposed
perturbation.

It is of interest to compare the results for a thread loaded with a sequence of
spherical particles with those for an annular viscous thread coated on the outside of
a circular cylinder. For illustration, we consider a cylinder with the same diameter as
the spherical particles. Figure 6(a) shows as thick solid lines the two dominant growth
rates for the case of a thread with a clean interface, Ma =0, loaded with particles
whose radius is five times smaller than the thread radius, a/b = 0.2, and suspended in
a less viscous fluid, λ=0.5. The growth rates for a clean annular thread with viscosity
μ1 coating a circular cylinder of radius 0.2b and surrounded by an ambient viscous
fluid with viscosity μ2 = 0.5μ1 is depicted with a thin dotted line. The growth rate
for the first higher harmonic is shown with a thin broken line. The growth rates for
the annular film were computed using the method described by Kwak & Pozrikidis
(2001). The results show that the growth rates for the loaded thread are substantially
higher than those for the annular thread. The two sets of growth rates differ the most
when kb is small, and the particles are widely spaced.

In the presence of an insoluble surfactant, a homogeneous thread devoid of particles
admits two normal modes for a fixed wavenumber, kb (e.g., Kwak & Pozrikidis
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Figure 7. (a) Growth rates for a/b = 0.2, λ= 0.5, Ma = 1 and Ds =0. Panel (b) shows a
close-up of (a). The dominant growth rates for a loaded thread are shown as thick solid lines,
and those for a pure thread are shown as broken and dot-dashed lines, with the thin lines
representing the first higher harmonics.

2001). Figure 7(a) shows with thick solid lines the dominant growth rates for a
contaminated thread loaded with particles for λ= 0.5, b/a =0.2, Ma =1 and Ds =0.
The corresponding growth rates for a pure thread are shown with thick broken lines
and thick dot-dashed lines. The thin broken and thin dot-dashed lines graph the
first higher harmonics of the respective pure modes. The growth rate curves are
qualitatively similar to those for a clean thread displayed in figure 3. Again, for
the small particle size presently considered, the growth rates for the loaded thread
overlap with those for a pure thread. Moreover, the dominant loaded-thread mode
jumps from one pure-thread mode to its higher harmonic at the wavenumber at
which these two intersect. A close-up of the crossover at kb = 0.383 is shown in
figure 7(b).

The second most dangerous mode of the contaminated thread attaches to the
fundamental unstable pure mode at kb = 0.284 before crossing to the first higher
harmonic pure mode at kb =0.383. It overlaps with this mode until kb = 0.745 at
which it jumps to the second most dangerous pure mode. Overall, the surfactant
shifts the growth rate curves for the loaded thread downwards, tending to stabilize
the thread. However, the unstable range of wavenumbers remains unchanged. As for
a clean thread, we may estimate the growth rate at small wavenumber by considering
the intersections of the pure-thread modes. In figure 5, we show the wavenumbers
and growth rates at the intersections of the dominant pure modes for a contaminated
thread with Ma =1. The results are shown with squares on a broken line. As the
wavenumber tends to zero, the growth rate approaches a finite value.

Figure 6(b) compares the growth rates of the loaded thread with those of an annular
layer coated on the outside a cylinder whose radius is equal to the particle radius, for
Ma =1 and Ds = 0. The two dominant modes of the annular layer are both shown
as broken lines. As in the case of the pure thread, the differences between the two
sets of results is striking, particularly for small values kb and widely spaced spherical
particles.

The results discussed in this section are representative of the general behaviour of
the system. Investigations carried out for numerous different values of the parameters
λ and Ma all led to qualitatively similar results to those presented here.
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5. Boundary integral formulation
In the case of fluids with equal viscosity and a clean interface devoid of surfactants,

the boundary integral formulation for axisymmetric Stokes flow provides us with an
integral representation for the velocity at a point, x0, inside or outside the thread,

uα(x0) = − γ

4πμ

∫
I

Gαβ(x, x0)2 κm(x)nβ(x)dl(x)

− 1

8πμ

∫
P

Gαβ(x, x0)fβ(x)dl(x), (5.1)

where I is one period of the interfacial contour in a meridional plane; P is the
contour of one particle in an meridional plane; f is the particle surface traction; l is
the arclength; and Gαβ(x0, x) is the periodic Green’s function of axisymmetric Stokes
flow discussed in Appendix B. Greek indices take the values x or σ for the axial or
radial direction. In the absence of particles, the second integral on the right-hand side
of (5.1) does not appear. Applying (5.1) to the particle contour, we obtain an integral
equation of the first kind for the surface traction.

To solve the integral equation and thus retrieve the interfacial velocity, we divide
one period of the interface in an meridional plane into NI intervals and approximate
the interfacial shape using cubic spline interpolation with respect to the polygonal
arclength, subject to periodic boundary conditions (e.g. Pozrikidis 2008). The mean
curvature and normal vector follow readily from the parametric interpolation. The
contour of a spherical particle in a meridional plane is divided into Np circular
elements, and the traction components are approximated with constant functions
over each element. Pointwise collocation is then enforced at the midpoints of the
circular elements to derive a system of linear equations for the element tractions.
The integrals over the boundary elements are computed using the six-point Gauss–
Legendre quadrature after the logarithmic singularity of the diagonal components of
the Green’s function has been subtracted out and then integrated analytically with
respect to the meridional angle.

The calculation of the singe-layer integral over the interface requires careful
attention due to the pronounced sensitivity of the numerical linear stability analysis
discussed in the next section on the accurate evaluation of the integrals. In one method,
the integration is performed over straight segments connecting pairs of successive
interfacial nodes after the logarithmic singularity of the diagonal components of
the Green’s function has been subtracted out and then integrated analytically with
respect to the straight distance from the singular point. In the second approach, an
integral identity is used to restate the single-layer potential over the interface in the
desingularized form ∫

I

Gαβ(x, x0)2 [ κm(x) − κm(x0) ]nβ(x)dl(x), (5.2)

and the integration is performed with respect to the polygonal arclength implementing
the cubic spline interpolation (e.g. Pozrikidis 1992). For a fixed number of boundary
elements, approximating the interfacial contour with a polygonal line using the
first method may introduce spurious unphysical eigenvalues that disappear as the
discretization level increases; and for this reason the second approach is far superior.

5.1. Numerical linear stability analysis

We have seen that the cylindrical interface is susceptible to a capillary instability
mediated by exponentially growing disturbances representing normal modes. In the
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case of axisymmetric perturbations with period equal to the particle spacing, L, the
interfacial shape is described by

σ = Σ(x, t) = b[1 + η(x) exp(st) ], (5.3)

where η(x) is a periodic eigenfunction with small amplitude representing a normal
mode, and s is the corresponding growth rate. In the absence of a mean flow, kinematic
compatibility requires the linearized condition

∂Σ

∂t
= uσ (Σ, t) (5.4)

evaluated at the interface. Substituting the normal-mode waveform, evaluating the
velocity at the initial instant and rearranging, we find

uσ [b(1 + η), t = 0] = sbη(x). (5.5)

In its discrete representation in terms of interfacial marker points, this equation
evaluated at the ith marker point, xi , becomes

uσ (xi; x1, x2, . . . , xNI
; t = 0) = sbηi, (5.6)

where i = 1, . . . , NI , and we have denoted ηi = η(xi). Linearizing the velocity on the
left-hand side with respect to the small displacements of the marker points, we find(

∂uσ

∂ηj

)
η=0

(xi)ηj = sηi, (5.7)

which shows that the growth rate is an eigenvalue of the matrix of derivatives,
M, on the left-hand side. The matrix M is singular, having a zero eigenvalue with
a corresponding constant eigenvector representing a physically inadmissible radial
expansion.

The boundary integral formulation can be used to perform a numerical normal-
mode linear stability analysis. The numerical procedure involves the following steps:

(a) Divide one period of the straight interfacial contour into NI arbitrary intervals
separated by nodes.

(b) Compute and store the radial velocity at the position of all nodes. In principle,
the radial velocity of a cylindrical column with uniform mean curvature is zero; in
practice, the radial velocities are non-zero due to approximations in the computation
of the contour integral with non-zero curvature.

(c) Displace the ith interfacial node and its periodic images along the σ axis by
the small distance b ε, for i = 1, . . . , NI .

(d) Compute the radial velocity at the position of all nodes; subtract the velocity
computed in (b); divide the difference by b ε; and put the result at the ith row of a
matrix, M.

The growth rates of a fundamental perturbation with wavelength L and its higher
harmonics with wavelengths L/m are the eigenvalues of M, where m is an integer.
The corresponding eigenvectors are discrete representations of the normal-mode
eigenfunctions, η(x).

Full advantage is taken of the left-to-right symmetry of the flow with respect to
the plane that passes through each particle centre normal to the x-axis to reduce the
size of the eigensystem. Even with this improvement, the solution of the eigenvalue
problem for each configuration takes from 15 minutes to many hours of CPU time
on a high-end workstation. All results reported in this section were obtained using
the spline interpolation for integrating over the interface.
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(a)

kb ε NG NI = 8 16 32 64 96 128 ∞ Mode

2/3 10−3 4 0.0312 0.0321 0.0300 F
10−6 4 0.0313 0.0328 0.0332 0.0334 0.0334 F

0.3 10−6 3 0.0252 0.0238 0.0237 0.0237 0.0237 0.0237 F
0.0320 0.0337 0.0347 0.0351 0.0352 0.0352 S1

0.37276613 10−6 3 0.0297 0.0290 0.0290 0.0291 0.0291 0.0291 0.0291 F
0.0208 0.0265 0.0284 0.0289 0.0290 0.0290 0.0291 S1

(b)

kb a/b =0 0.2 0.5 0.7 0.9 Mode

0.3 0.0237 0.0237 0.0234 0.0228 0.0215 F
0.0352 0.0351 0.0344 0.0329 0.0309 S1

0.37276613 0.0291 0.0291 0.0291 0.0291 0.0291 F
0.0291 0.0290 0.0275 0.0241 0.0155 S1

Table 3. Predicted linear growth rates, S = sγ /(μb). (a) Growth rates for a pure thread.
The penultimate column headed by infinity denotes the exact value obtained by Tomotika
(1935) in terms of Bessel functions. In the last column, F denotes the fundamental wave, and
S1 denotes the first higher harmonic. The Green’s function computational parameter NG is
defined in Appendix B. (b) Effect of particles on the growth rate of dominant normal modes.
These growth rates were computed with ε = 10−6, NG =3, NP =32 and NI = 96 for kb = 0.3
or NI = 128 for kb = 0.37276613.
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Figure 8. Reduced growth rate, S = sγ /(μb), of axisymmetric perturbations on a pure thread
of radius b with sinusoidal waves of wavelength L (solid line) and its first higher harmonic
(dashed line). The symbols mark the dominant growth rate for kb = 0.3, 0.375, 0.5, 2/3, 0.85
and 1 and particle radius a/b =0.05 (�), 0.20 (�), 0.50 (�), 0.70 (+) and 0.90 (×).

To validate the method, we consider the capillary instability of a pure thread
of radius b, in the absence of particles. Tomotika’s (1935) exact growth rates are
plotted with the solid line in figure 8. Table 3(a) summarizes the dominant growth
rates computed by the numerical linear stability analysis for three wavenumbers. For
a fixed configuration, the numerical error is of the order of the magnitude of the
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numerical impulse, ε. When kb = 2/3, only one positive eigenvalue appears, and all
higher harmonics are stable. When kb =0.3, two positive eigenvalues appear, one
corresponding to the fundamental wave (F) and the second corresponding to its first
higher harmonic wave (S1); higher harmonics are stable. When kb = 0.37276613 . . .,
the growth rates of the fundamental wave are identical; higher harmonics are stable.
The numerical results demonstrate a rapid convergence with the known analytical
solution as the number of interfacial elements becomes higher.

In the case of a pure thread, the eigenvectors of the interfacial displacement are
pure sinusoidal waves. The growth rates may then be extracted by imposing a discrete
small-amplitude sinusoidal perturbation and identifying the growth rate with the ratio
between the radial velocity and radial displacement of each node. A node-averaged
value may be defined in some sensible fashion to filter out numerical noise. Numerical
experiments have shown that the numerical linear stability analysis in terms of the
matrix M presented in this section is superior, in that the averaging occurs naturally
through the computation of the eigenvalues. Consequently, the results converge faster
with respect to the number of intervals, and the predictions are less sensitive to the
evaluation accuracy of the periodic Green’s function.

Table 3(b) presents growth rates furnished by the numerical stability analysis for a
particle-laden thread. For kb = 0.3, the predicted growth rates are less than those of the
pure thread. The results for a/b =0.2 are consistent with those of the stability analysis
based on a Fourier series expansion discussed in § 3. Due to the large number of terms
required to capture the fine features of the eigenfunctions, the Fourier solution is not
able to yield reliable results for particles whose radius is approximately larger than
one fifth of the thread radius. The results for kb = 0.37276613 . . . are astonishing. We
find that the growth rate of the fundamental wave remains locked at the pure-thread
value, at least up to the third significant figure, for any particle radius. By contrast,
the growth rate of the first higher harmonic exhibits a strong dependence on the
particle radius. This behaviour can be attributed to some type of resonance whose
physical origin could not be identified.

Figure 9 shows graphs of the eigenfunctions of the dominant normal modes
representing interfacial displacements for kb =2/3 and 0.3 and four particle sizes.
When kb =2/3, the fundamental wave dominates. When kb =0.3, the first higher
harmonic wave dominates. The virtually imperceptible dashed lines in the first two
frames of figure 9(b) represent the predictions of the Fourier linear stability theory
discussed in § 3. The successful comparison confirms the accuracy of both the Fourier
analysis and boundary integral formulation. Consistent with physical intuition, as the
particle size increases, the interface deforms less over the particle, located at x =0,
than in the intervening region. The effect for large particles is manifested as a localized
downward indentation in the interfacial deformation above the particle surface.

The effect of the particles on the dominant growth rate is summarized by the
graphs connecting the symbols in figure 8. For a fixed particle separation, the larger
the particle radius the smaller the growth rate. We have seen that the particle
spacing in which the growth rates of the fundamental wave (solid line) and its first
higher harmonic wave (dashed line) on the pure thread are equal, corresponding
to kb = 0.37276613 . . . , is special. When the wavenumber lies on the right of the
intersection, the growth rates of the particle-laden thread fall on a locus that arises
from the downward displacement of the pure-thread lobe. When the wavenumber lies
on the left of the intersection, the growth rates arise from the downward displacement
of the first higher harmonic of the pure thread, and corresponding eigenfunctions
contain strong higher harmonic components, as illustrated in figure 9. For any
particle size, the growth rate curves tracing the symbols in figure 8 converge at the
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Figure 9. Eigenfunctions of the dominant normal modes for four particle radii and
fundamental wavenumbers (a) kb = 2/3 and (b) 0.3. The centre of one particle is located
at the origin of the x-axis.
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Figure 10. Evolving profiles of the unstable thread for kb = 2/3 and particle radius a/b = 0.5
(left) and 0.9 (right). In (a), the initial perturbation peaks over the particles (peaked
configuration). In (b), the initial perturbation reaches a trough over the particles (depressed
configuration).

intersection. These results are consistent with those obtained by the Fourier linear
stability analysis. The extension to larger particle sizes demonstrates the strong effect
of particles occupying a significant portion of the cross-section of the thread.

5.2. Dynamic simulations

To describe the nonlinear stages of the instability, we perform dynamical simulations
using as an initial condition the normal-mode interfacial profiles of the most unstable
modes available from the numerical linear stability analysis discussed in § 5.1. In
the numerical method, the integral equation for the particle traction is solved; the
interfacial velocity is computed; and the position of the interfacial nodes is advanced
in time using the first- or second-order Runge–Kutta method. To ensure adequate
resolution and prevent node clustering, interfacial marker points are adaptively
redistributed after each time step. The algorithm maintains the local aperture angle
subtended by the centre of curvature below a specified threshold and ensures that
the arclength between two successive points lies inside a specified window. Closely
spaced points are removed, provided that the specified level of spatial resolution is
not violated. When new interfacial nodes are introduced, their position is computed
from the cubic spline interpolation. The simulations end when the thread thins to the
point of impending breakup indicated by artificial interfacial crossing.

Figure 10 shows evolving profiles of the unstable thread for particle separations
corresponding to kb = 2/3 and particle radius a/b = 0.5 and 0.9. In figure 10(a),
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Figure 11. Same as figure 10 but for kb =0.3.

the initial perturbation peaks over the particles (peaked configuration), whereas in
figure 10(b), the initial perturbation reaches a trough over the particles (depressed
configuration). The initial interfacial shape is a sinusoidal wave with amplitude 0.5b in
both configurations shown in figure 10(a) and amplitude 0.4b and 0.1b, respectively,
in the first and second configuration shown in figure 10(b). As the instability develops
in the peaked configuration, large drops engulf the particles, and slender thinning
ligaments develop in the intervening region. The particle size has a moderate effect
on the interfacial morphology and distribution of the fluid between the encapsulated
particles and connecting ligaments. Ligament breakup occurs at a finite time, leading
to the formation of small satellite drops.

In the depressed configuration illustrated in figure 10(b), small drops engulf
moderate-sized particles with a/b = 0.5, while large pure drops connected by ligaments
develop in the intervening regions. When a/b = 0.9, the instability is nearly suppressed,
as the interface approaches the particle surface to form a sequence of particles
connected by axisymmetric bridges. The emerging configuration is similar to that of
a liquid bridge held by the the particle surfaces emulating fixed endplates. Because
kb < 1, the bridge is linearly unstable and is expected to disintegrate at long time
periods. However, the growth rate of the instability is significantly lower than that of
the homogeneous thread.

Figure 11 shows evolving profiles of an unstable thread for a larger particle
separation corresponding to kb =0.3. In the peaked configuration shown in figure
11(a), the thread is eventually divided into two alternating arrays of drops, only one of
which encapsulates particles, while an amount of fluid escapes into the ligaments. In
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the depressed configuration shown on the left of figure 11(b), the vast majority of the
fluid escapes into empty drops. Thus, two different coating thicknesses are expected
to arise after encapsulation. It is striking that in the case of large particles, illustrated
in the right column of figure 11, peaked and depressed perturbations lead to radically
different structures. In the second case, it appears that two nearly stationary drops
attached to the particle develop on either side.

6. Discussion
We have considered the capillary instability of a liquid thread encapsulating

a regular array of spherical particles, and we have described the properties
of exponentially growing or decaying linear normal modes. The mathematical
formulation is challenging in that the interfacial perturbation and disturbance flow
are not sinusoidal waves but are described instead by polychromatic Fourier series
expansions. The fundamental wave is determined by the particle spacing, and the
Fourier spectrum is determined by the particle size. In the absence of particles, only
the fundamental wave survives.

The pure thread is unstable only when the fundamental wavenumber reduced by
the inverse of the undeformed thread radius is smaller than unity. We have confirmed
that the same holds true for a thread loaded with particles. As the particle spacing
increases, the particles play an increasingly important role by determining the most
unstable available higher harmonic wave. At a predictable sequence of wavenumbers,
the interfacial deflection of the loaded thread is composed solely of contributions from
the higher harmonics of the fundamental wave. Correspondingly, the growth rate ap-
proaches a finite limit as the particle spacing grows. An insoluble surfactant generally
lowers the growth rate of the normal modes. However, the surfactant is not able to
completely stabilize the thread. These results are consistent with the findings of Kwak
& Pozrikidis (2001) for a pure thread devoid of particles. A loaded thread becomes
more unstable when suspended in a less viscous fluid. A thread suspended in a vacuum
shows markedly different behaviour when clean or contaminated with surfactant.

We have developed a boundary integral formulation to describe the capillary
instability of a particle-laden thread subject to axisymmetric perturbations. The
numerical method was successfully applied to carry out a numerical linear stability
analysis, yielding the growth rates and waveforms of fundamental and higher
harmonic waves. The methodology is not unique to the thread but can be generalized
to arbitrary configurations involving interfaces between immiscible fluids. An example
is the stability of a pendant axisymmetric liquid drop or liquid bridge subtended
between two concentric cylinders.

The linear stability analysis performed with the boundary integral method has
confirmed the results produced by the Fourier series analysis. Excellent agreement was
confirmed for small particles whose radius was up to one fifth of the thread radius. The
boundary integral method was applied to compute growth rates for different particle
sizes and particle spacings. Most interestingly, the calculations confirmed the intriguing
observation that when the particle spacing takes a special value corresponding to the
wavenumber at which the growth rates of the fundamental mode for a pure thread
and its first higher harmonic coincide, the growth rate of the dominant mode does not
depend on the particle size. At other wavenumbers, the particle size has a significant
effect on the linear displacement of the interface. In particular, for larger particles
and fixed particle separation, the interfacial deflection is considerably smaller than
midway between the particles.
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Dynamic simulations performed with the boundary element method have illustrated
the progress of the instability in the nonlinear regime in which the interfacial
deflection is not small, for fluids with equal viscosity. Experience with similar problems
involving liquid drops suggests that the motion for λ= 1 is representative of that for
approximately 0 < λ< 5. (e.g. Kennedy, Pozrikidis & Skalak 1994). For an initial
profile that peaks over a moderate-sized particle, the latter stages of the evolution
are characterized by large drops of fluid encapsulating the particle and linked by
thin fluid strands that tend to pinch off at the point at which they connect to the
drops. For an initial profile with a trough over a moderate-sized particle, the latter
stages of the evolution are characterized by small drops of fluid encapsulating the
particle, linked by short strands to much larger drops of clear fluid on either side.
The nonlinear outcome of the encapsulation process depends crucially on the form
of the initial perturbation.

This research was supported by a grant from the National Science Foundation.

Appendix A. Computation of derivatives of the point force and point source
In this appendix, we supply recurrence relations used to efficiently compute the

derivatives arising in the expressions for the point force, S3, in (3.8) and for the point
source, S5 in (3.10). For the point force, we define

S3 ≡
∞∑

n=−∞
s3, s3 =

x̂ − nL̂

P
, (A 1)

where P = Q3 with

Q = [σ̂ 2 + (x̂ − nL̂)2]1/2. (A 2)

Multiple differentiation of (A 2) yields the formula

∂rQ

∂x̂r
=

1

Q

{
∂r−1

∂x̂r−1
(x̂ − nL̂) − 1

2

r−1∑
p=1

(
r

p

)
∂pQ

∂x̂p

∂r−pQ

∂x̂r−p

}
(A 3)

for r � 1, where the summation term is ignored in the case r = 1. Straightforward
manipulation of the preceding expressions produces the pair of recurrence
relations,

∂rP

∂x̂r
= 3(x̂ − nL̂)

∂r−1Q

∂x̂r−1
+ 3(r − 1)

∂r−2Q

∂x̂r−2
(A 4)

for r = 2, 3, . . . and

∂ks3

∂x̂k
= − 1

P

{
k∑

r=1

(
k

r

)
∂k−r s3

∂x̂k−r

∂rP

∂x̂r
+

∂k

∂x̂k
(x̂ − nL̂)

}
(A 5)

for k = 1, 2, . . ..
For the point source, we define

S5 ≡
∞∑

n=−∞
s5, s5 =

x − nL̂

R
, (A 6)
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where R = Q5, and derive the recurrence relations

∂rR

∂x̂r
= 5(x̂ − nL̂)

∂r−1P

∂x̂r−1
+ 5(r − 1)

∂r−2P

∂x̂r−2
(A 7)

for r =2, 3, . . . and

∂ks5

∂x̂k
= − 1

R

{
k∑

r=1

(
k

r

)
∂k−r s5

∂x̂k−r

∂rR

∂x̂r
+

∂k

∂x̂k
(x̂ − nL̂)

}
(A 8)

for k = 1, 2, . . ..

Appendix B. Computation of the periodic Green’s function of Stokes flow
To develop the boundary integral formulation of the axisymmetric thread breakup,

we introduce the free-space Green’s function of axisymmetric Stokes flow defined
such that

uR
α (x0) = − 1

8πμ
GFS

αβ (x, x0)gβ (B 1)

is the velocity at the point x0 induced by a ring of point forces of radius σ positioned
at x; μ is the fluid viscosity; gβ is the strength of the point force ring; and Greek
indices can be x or σ . An analytical expression for the Green’s function in terms of
complete elliptic integrals accompanied by computer programmes is available (e.g.
Pozrikidis 1992, 2001). It can be shown that the free-space Green’s function satisfies
the symmetry property

σ0G
FS
βα (x, x0) = σGFS

αβ (x0, x), (B 2)

which allows us to switch the position of the evaluation point and the point-force
ring. Thus, the velocity due to the ring can be expressed in the alternative form

uR
α (x) = − σ

8πμσ0

gβG
FS
βα (x0, x). (B 3)

Mass conservation requires an integral identity stemming from the continuity
equation, ∮

C

nα(x0)G
FS
αβ (x, x0)σ0dl(x0) = 0, (B 4)

where C is a closed contour in a meridional plane possibly involving a section of the
x-axis; n is the unit vector normal on C; and l is the arclength along C. Using the
symmetry identity and then relabeling x as x0 and vice versa, we find∮

C

GFS
αβ (x, x0)nβ(x)dl(x) = 0. (B 5)

Thus, the normal vector is an eigenfunction corresponding to the null eigenvalue of
the single-layer potential of axisymmetric Stokes flow,

ISLP
α < ψ >≡

∮
C

GFS
αβ (x, x0)ψβ(x)dl(x). (B 6)

That is, ISLP
α < n > = 0.
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NG Gxx Gxσ Gσx Gσσ

1 −10.0939 −1.5496 −0.6979 −4.4348
2 −9.2954 −1.0892 −0.8799 1.2583
3 −9.2292 −1.1093 −0.8554 1.3077
4 −9.2172 −1.1120 −0.8525 1.3151
5 −9.2139 −1.1127 −0.8518 1.3170
6 −9.2127 −1.1129 −0.8516 1.3177
7 −9.2122 −1.1130 −0.8515 1.3180
8 −9.2120 −1.1131 −0.8515 1.3181
9 −9.2118 −1.1131 −0.8514 1.3182
10 −9.2117 −1.1131 −0.8514 1.3183

Table 4. Convergence of the periodic Green’s function for axisymmetric flow with respect to
the truncation level, p, for L/σ = 1, x0 − x = 0.1σ and σ0 = 0.9σ . The last row is accurate to
the fourth decimal place.

To obtain the flow due to a periodic array of point-force rings separated by the
distance L, we apply direct summation and find

Gαβ(x, x0) =

∞∑
n=−∞

GFS
αβ (x + nL, σ, x0, σ0). (B 7)

The summed terms in (B 7) decay like 1/|nL|2 for all but the xx component of the
Green’s function, and the corresponding infinite sums are convergent. The summed
terms for GFS

xx decay like 1/|nL + x − x0|, and the corresponding sum is divergent,
requiring renormalization. However, since the x velocity at the point x0 can be
modified by an arbitrary constant that is independent of x0 but may depend on x

and σ , we write

Gxx(x, x0) =

∞∑
n=−∞

GFS
xx (x + nL, σ, x0, σ0) − 8πσ

∞∑
n=1

1

|nL| . (B 8)

The combined summed terms now decay like 1/|nL|2 for all components of the
periodic Green’s function. To expedite the convergence, we truncate the sums at
N = q2 NG, where NG and q are two integers, and use the intermediate sums for
N = NG and N = qNG to perform Aitken extrapolation (Pozrikidis 2008). The fast
convergence of the expedited summation is demonstrated in table 4 for a particular
configuration. In the numerical simulations discussed in § 5, we choose q = 2 and
adjust the value of NG according to the separation, L, and the ring radius, σ , to
achieve a specified level of accuracy.
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